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Abstract
The biggest open problems in the life sciences concern the

algorithms by which competent subunits (cells) could coop-
erate to form large-scale structures with new, system-level
properties. In synthetic bioengineering, multiple cells of di-
verse origin can be included in chimeric constructs. To fa-
cilitate progress in this field, we sought an understanding
of multi-scale decision-making by diverse subunits beyond
those observed in frozen accidents of biological phylogeny:
abstract models of life-as-it-can-be. Neural Cellular Au-
tomata (NCA) are a very good inspiration for understanding
current and possible living organisms: researchers managed
to create NCA that are able to converge to any morphology. In
order to simulate a more dynamic situation, we took the NCA
model and generalized it to consider multiple NCA rules. We
then used this generalized model to change the behavior of a
NCA by injecting other types of cells (adversaries) and let-
ting them take over the entire organism to solve a different
task. Next we demonstrate that it is possible to stop aging in
an existing NCA by injecting adversaries that follow a differ-
ent rule. Finally, we quantify a distance between NCAs and
develop a procedure that allows us to find adversaries close to
the original cells.

Introduction
Biology operates in a multiscale competency architecture:
cells follow local rules in ways that result in interesting and
robust large-scale patterns. Major knowledge gaps, despite
progress in molecular genetics, include the policies guiding
individual cell behaviors toward body-level anatomical
structures. This especially concerns the algorithms needed
to reliably reach a consistent form under a range of chang-
ing conditions. Cellular behavior is guided in part by
gene-regulatory networks inside cells, and coordinated by
biochemical and bioelectrical networks at the tissue level.
Both of these can be represented as neural networks that
guide the mechanisms determining the cell’s activity Moore
et al. (2018); Biswas S (2016).

Neural Cellular Automata (NCA) represent a recent de-
velopment of Cellular Automata, where the underlying rule
is represented as a neural network and is learned using
gradient-based optimization Mordvintsev et al. (2020); the
NCA starts from a seed state and is trained to reach a target
state (figure 1).

Figure 1: Example of seed and target state, left: the seed
state, right: the target state.

In recent advances in this field, scientists have managed
to change the global properties of a NCA by adding some
cells that follow a different rule Randazzo et al. (2021); this
corresponds to biological situations when cells of diverse
genetics are assembled into chimeras Nanos V (2021).
However these cells remain fixed and can’t expand in space.

This is a problem, because the number of new cells (aka.
adversaries) required must be relatively high in order to steer
the behavior of the whole organism, however, substituting
a high number of cells in a biological organism could be
difficult. In general, one task in biomedical interventions
and in guided self-assembly (bioengineering) contexts is to
find the minimal intervention that achieves a given outcome.

One way to minimize the intervention is to generalize
NCA to multiple rules, allowing us to simulate what hap-
pens when one type of cell overtakes the other. This way
we can inject very few adversaries and let them take over
other types of cells (figure 2). Furthermore, this model is a
generalization of the NCA model1 that is more biologically
plausible, since it can simulate the growth of a group of cells
at the expense of another.

Figure 2: In orange we indicate the original cells while in
blue the adversarial cells. The adversaries take over the orig-
inal cells and change the behavior of the whole organism.

1Because, if all the rules are the same, the model behaves like
evolving with a single rule.



We then apply the model to two different scenarios:

• Changing static properties of a NCA: Examples of such
properties are changing the color of an organism (figure
3), adding or removing a limb, making the tail longer, and
so on. All of these properties can be observed with a be-
fore/after photo of the organism.

• Changing dynamical properties of a NCA: Examples
of these properties are altering the lifespan of an organ-
ism, or the ability to regenerate damage. These properties
are much more interesting from an aging and regenerative
medicine point of view, however, as we will see, they are
much harder to train than the static ones.

Figure 3: Example of changing a static property, the lizard
color turns from green to red.

Lastly, the parameters of the adversaries can become dras-
tically different from the original cells they replace, which
presents biologists with the challenge of identifying DNA or
pharmacological reagents that change some of the cells’ be-
haviors in the necessary fashion. This gives rise to an impor-
tant inverse problem Lobo D (2014): what can be tweaked
at the lowest level (e.g., DNA mutations) to give rise to de-
sired changes at the system level (anatomy)? The difficulty
of solving this problem is what prevents true Lamarckian in-
heritance, and also limits regenerative medicine applications
of modern technologies such as CRISPR.

Therefore, we explore ways to make the parameters of the
adversarial cells as similar as possible to the original cells,
while still being able to accomplish the given task, demon-
strating that only a small change in the parameters is suffi-
cient to turn an original cell into an adversarial one.

Figures in video form and the code is available here2.

The model
NCA model
Before diving into the generalization of NCA, we summa-
rize how the NCA model works; a better explanation can be
found in the original paper Mordvintsev et al. (2020).

A Cellular Automata (CA) consists of a grid of cells that
is iteratively updated using the same update rule at each step
Neumann and Burks (1966), the only requirement is that the

2https://letteraunica.github.io/neural_
cellular_automata/extra

next state of each cell depends only on its previous state, xt

and the state of its neighbors, N(xt).

xt+1 = f(xt, N(xt))

Neural Cellular Automata (NCA) use a neural network to
model the function f and consider the states xt to be contin-
uous, this allows training f using gradient-based optimiza-
tion. The cell state xt is represented by a vector where the
first 4 components represent the RGBA channels of the pixel
and the remaining are hidden channels that allow the NCA
to pass information between its cells (figure 5 left).

The α channel (transparency) has an important role: if
a cell has α > 0.1 it means that the cell is mature, other-
wise it’s dead. This distinction is essential because a cell
can change its state if at least one of its immediate neigh-
bors3, or itself, is mature (figure 4), if this is not the case its
state is set to 0. The evolution starts with only one mature
cell in the center of the canvas, then the cells are evolved and
reach the target image (figure 1).

Mature

Growing

Empty

Figure 4: Illustration of mature, growing and empty cells,
growing cells are in the immediate neighborhood of ma-
ture ones. Image adapted from Mordvintsev et al. (2020),
licensed under CC BY 4.0.

Multiple NCA model

We call our new model Multiple NCA because it generalizes
a single NCA to multiple update rules. For ease of explana-
tion, we are going to consider the case of only 2 rules, f1
and f2.

Masking Since the α channel tells whether a cell is alive
or dead, if we have two different types of cells we need two
alpha channels, α1 and α2. In this new model we decided to
put the alpha channels at the end of the state vector (figure
5).

3We consider a Moore neighborhood.

https://letteraunica.github.io/neural_cellular_automata/extra
https://letteraunica.github.io/neural_cellular_automata/extra
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Figure 5: left: location of the channels in the NCA model,
right: channels location in the Multiple NCA model.

To make the model more realistic we added some con-
straints:

1. A cell can be mature in only one channel, this means that
no cell can have both alphas > 0.1 . We do this because
we consider the two cells as having different DNA, so they
must have different rules and there is no in-between.

2. We impose that new cells can only grow near mature ones
of the same type, example: cells of type 2 can only grow
near mature cells of type 2.

3. When both alphas are in 0 ≤ α < 0.1, and the cell is near
a mature one of both f1 and f2, the cell evolves follow-
ing the average of both rules (figure 6). Biologically this
means that two kinds of cells are fighting for the control of
one spot. Mathematically, we did this because otherwise
we would have a privileged rule. This also implies that, if
the two rules are the same, the system acts identically to
what it did if it was evolved with only one rule.

f1  Mature
f1  Growing
f2  Mature

f1 + f2

f2  Growing

f1 f2

Figure 6: Representation of two different rules evolving
toghether in the Multiple NCA model. Magenta cells are
growing cells of both f1 and f2, so they evolve following
the average of both rules.

Furthermore, we change the perception stage and the out-
put of the NCA as follows.

Perception The Multiple NCA model perceives only the
sum of all alpha channels4, and not the individual channels,
we do it for two main reasons:

• Computational: we have 2 alpha channels, however, the
NCA model uses only one alpha channel, which means
that we need to find a function that reduces the number of
alpha channels before passing the state to the NCA model
to be evolved; summing up the two alpha is one of the
simplest ways to do this without having a privileged rule.

• Biological: Summing up the two alpha has a nice biolog-
ical interpretation, it assumes that a cell is aware of its
surroundings but can’t distinguish the type of the neigh-
boring cells trivially, since it doesn’t have access to α1

and α2; this encourages a NCA to take advantage of the
hidden channels to be able to distinguish itself from the
other NCAs.

From an implementation standpoint we only need a func-
tion that takes a state x, sums the alpha, and places the sum
right after the RGB components (figure 7); this new state
can now be passed to the NCA to be evolved.
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Figure 7: Before passing the state to f1 or f2 to be evolved,
we sum up α1 and α2 then place the sum in the right location
in the state vector.

Output We impose that each NCA can only update its al-
pha channel and not the other ones (figure 8). This makes
sense because we don’t want a cell of type 1 to edit the al-
pha channel of a cell of type 2 and therefore kill it trivially.

4Other possible functions could have been:

1. Weighted sum of the alphas. However, this implies that there is
a privileged rule.

2. Randomly choose an alpha channel to be perceived. However,
this doesn’t have a nice biological interpretation like summing
up the alpha channels.



Instead, if the adversaries want to take over, they must rely
on changing their internal state in such a way that makes the
original cells undergo the process of apoptosis.
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Figure 8: After f1 computes the update we take α1 and put
it at the end of the state vector, leaving α2 unchanged.

The whole update step can be seen in figure 9.

Training technique
One of the first issues we encountered, was that the adver-
sarial cells never tried to overtake the original cells, so they
never took over the organism. We solved this problem by
penalizing the percentage of old cells still present, like so:

L = Ltarget + λNold

Where Ltarget is the distance to the target image, Nold is
the number of old cells5, and λ is a hyperparameter.
Considering a loss function like this, nevertheless, leads to
another problem: when we first introduce the new cells Nold

is very high, which in turn makes the loss very high. This
means that the adversaries will trade some of the image qual-
ity in favor of a faster cell replacement. A solution could be
to give the NCA plenty of time before evaluating the loss,
however, the NCA might learn to destroy the image at the
start, just to rebuild it before the loss evaluation. To address
both these problems we made a custom loss function that is
dependent on the number of steps n.

L =

nend∑
n=nstart

λ1(n)Ltarget(n) + λ2(n)Nold(n)

Now the hyperparameters λ1 and λ2 are functions that
depend on the number of steps n, while Ltarget and Nold

represent respectively the distance from the target image and
the number of old cells at the n-th step.

5This is slightly wrong since Nold is not differentiable, so in
practice we used the sum of the α1 channel over the entire image.
However, it is more intuitive to think about penalizing Nold rather
than α1.

Experiments
Changing static properties
As we stated in the introduction, static properties include
changing the color of an organism, adding or removing a
limb, making the tail longer, and so on. We decided to apply
our model to 3 cases of increasing difficulty (figure 10):

1. Turning the lizard from green to red: the shape remains
fixed but the color of the organism changes.

2. Removing the tail of the lizard: the shape of the organism
changes but the color remains the same6.

3. Turning a bug into a butterfly: both the shape and the color
pattern change dramatically.

In every case we start with a pre-trained Persistent NCA
(which means it reaches the final image and keeps it for an
infinite amount of time) and inject a small percentage of ad-
versaries in it, then we only train the adversaries in order to
change the appearance of the entire organism.

Figure 10: Illustration of the three static experiments.

6We found that altering the shape is harder because the adver-
saries have to learn to overtake the organism first, and, once the
original cells are gone, they have to remove the tail.



Output 1

Output 2

Figure 9: Illustration of the entire forward pass of the Multiple NCA model. f1 and f2 represent the two NCA rules, while
masking refers to the 3 operations described in the Masking subsection.

Results In figure 12 we plotted the evolution of the NCAs,
the time indicates the number of steps since the adversaries
are first injected, we always inject the adversaries in a 2x2
square randomly located inside the organism. As you can
see, the adversaries learn to influence the original cells to
undergo the process of apoptosis, thus taking over the whole
organism. Furthermore, as they are expanding, they try to
match the color and target shape.

From a biological point of view, we think that adding the
adversaries in a small square is more interesting than using,
for example, a spray pattern (figure 11), because it shows
that we can edit the cells in a single location then the change
propagates throughout the body.

Figure 11: Examples of spray patterns with different per-
centages of adversaries, in blue, of respectively, 5%, 25%
and 50%.

From a practical perspective, we noticed that training a
model with adversaries that start from a small square is much
harder than training starting from a spray pattern (figure 11),
however, models that are able to take over starting from a
small square generalize well to spray patterns, while the op-
posite isn’t true, these results can be found here.

t=60 t=100 t=150 t=200 t=500

Figure 12: Results of the static experiments, first we plot
the evolution of the organism, and right below it the cell
mask, which tells where the original (orange) and the
adversarial (blue) cells are located. t refers to the number
of steps since the beginning of the evolution, we inject the
adversaries always at step 60. We encourage the reader to
take a look at the videos of this evolution at https://
letteraunica.github.io/neural_cellular_
automata/extra#static-properties

https://letteraunica.github.io/neural_cellular_automata/extra#static-properties
https://letteraunica.github.io/neural_cellular_automata/extra#static-properties
https://letteraunica.github.io/neural_cellular_automata/extra#static-properties
https://letteraunica.github.io/neural_cellular_automata/extra#static-properties


Changing dynamic properties

Changing a dynamic property means to change the whole
NCA evolution, for example avoiding the decayment of a
Growing NCA (figure 13). In this part we focus on turning
3 Growing NCA into Persistent ones, this is much harder
than the previous experiment because the organism remains
in the final state only for a limited amount of time, so the
adversaries have to take over the whole organism before it
decays.

Results In figure 13 we plot the evolution of 3 Growing
NCA before we turn them into Persisting ones, in all cases
we perform the adversarial injection at step t=60, which cor-
responds to the time the Growing NCA reaches the target
state.

t=60 t=80 t=120 t=240

Figure 13: Growing NCA rules that we used in the dynamic
experiment. After some steps they degenerate.

The Growing lizard was the easiest to turn into Persistent,
because it decays at about step 200. This leaves about 140
steps for the adversaries to take over the organism, which
are sufficient even when injecting the adversaries in a small
3x3 square seed (figure 14).

The butterfly was a little harder. In this case the organ-
ism decays by vanishing at about step 120. We see that the
adversaries exploit this feature and take over the organism
exactly when it vanishes. We weren’t able to train this NCA
with a square seed, which indicates the difficulty of the task.
Still, we managed to reduce the initial number of adversaries
to a very low number, only 3% of the total cells.

Finally, to turn a Growing NCA of the firework into a
Persistent one, we needed about 50% of cells substituted,
much higher than the lizard and the butterfly. We think this
is due to 2 factors:

1. Unlike the butterfly, the firework decays by exploding
rather than vanishing (figure 13).

2. Unlike the lizard, the firework decays at about step 140
(figure 13), since we perform the adversarial injection at
step 60, this leaves only 80 steps for the adversaries to
take over.

These two factors combined mean that the adversaries
must take over before the growing cells explode. However,
this time is very limited, which leads to a high initial number
of adversaries.

From these experiments we can hypothesize that the more
time it takes for the organism to decay the lower the initial
percentage of adversaries is needed.

t=60 t=100 t=150 t=200 t=500

Figure 14: Results of the dynamic experiments, as before,
first we plot the evolution of the organism, and right below
it the cell mask, which tells where the original (orange) and
the adversarial (blue) cells are located. t refers to the number
of steps since the beginning of the evolution, we inject the
adversaries always at step 60. We encourage the reader to
take a look at the videos of this evolution at https://
letteraunica.github.io/neural_cellular_
automata/extra#dynamic-properties

https://letteraunica.github.io/neural_cellular_automata/extra#dynamic-properties
https://letteraunica.github.io/neural_cellular_automata/extra#dynamic-properties
https://letteraunica.github.io/neural_cellular_automata/extra#dynamic-properties


Adding a perturbation
Iterated maps, like cellular automata and differential equa-
tions, oftentimes lead to chaotic systems. This implies that
small changes to the initial conditions or to the function pa-
rameters, will lead to completely different results after some
time Berto and Tagliabue (2022).

This is a double-edged sword:

• On one hand, chaotic systems, by definition, are very hard
to predict and understand.

• On the other hand, lying at the edge of chaos gives us the
power of influencing the system by a lot, with very lit-
tle changes to its parameters Berto and Tagliabue (2022).
Mother nature knows this very well, for example, humans
have 99% of the DNA in common with chimpanzees, yet
we are very different from them.

In the previous paragraphs, when training the adversaries,
oftentimes the parameters become widely different from the
ones of the original cells. This is a problem, because in a
real organism we would like to edit the cells as little as pos-
sible. In this section we try to fix this problem by finding
adversaries with parameters close to the original NCA pa-
rameters.

The model
As we said, we’d like to have adversaries with weights that
are only a little perturbation off the original ones:

wnew = wold +∆w

To be sure that the perturbation ∆w remains as small as pos-
sible, we added an additional term in the loss, which penal-
izes the L2 norm of the perturbation |∆w|2, so the total loss
will be:

L = Ltarget + λ1Nold + λ2|∆w|2

Where Ltarget is the distance to the target image and λ1,
λ2 are hyperparameters. We used two different metrics to
evaluate the results, the norm of the perturbation |∆w|2 and
the the cosine similarity between wold and wnew.

cos(wold, wnew) =
⟨wold, wnew⟩
|wold||wnew|

Results
In figure 15 you can see the metrics for turning a green Per-
sistent lizard into a red Persistent lizard for lower and lower
initial percentage of adversaries and for the following train-
ing regimes.

1. When training the adversaries starting from a random ini-
tialization of the weights and set λ2 = 0.01

2. When training the adversaries starting from the same
weights of the original cells, wnew = wold, and set
λ2 = 0.01

3. When training the adversaries starting from the same
weights of the original cells, wnew = wold, and set
λ2 = 0

4. When training the adversaries starting from a random ini-
tialization of the weights and set λ2 = 0

We train each model until it has a loss < 0.01, which
we found was an appropriate value to have visually indistin-
guishable images.

Figure 15: |∆w| and cosine similarity measures in different
training regimes. By penalizing |∆w| we manage to find ad-
versaries close to the original cells even when starting from a
random initialization. Furthermore, as we decrease the num-
ber of initial cells, |∆w| increases and the cosine similarity
decreases.



Related Work
The paper Adversarial Reprogramming of Neural Cellular
Automata Randazzo et al. (2021) laid the foundations for
this work, while the talk given by Michael Levin at NeurIPS
2018 Levin (2018) provided biological insight and ideas for
multiple experiments.
The field of Neural Cellular Automata is already vast, NCAs
have been used in texture generation Niklasson et al. (2021),
image classification Randazzo et al. (2020), and image seg-
mentation Sandler et al. (2020). Furthermore, researchers
managed to find the NCA that converges to a given image
without training the NCA Chen and Wang (2020), in other
words, the authors use a neural net to encode an image in
the weights of a NCA. Other relevant works include the ap-
plication of NCA to reaction-diffusion systems Mordvintsev
et al. (2021), in this case the learned rule is more general
because it doesn’t depend on the structure of the grid, this
allows a NCA trained on a 2D grid to be used on different
geometries.
The kinds of adversarial attacks shown in this paper stem
from the Generative Advesarial Networks Goodfellow et al.
(2014) area of research and in particular Adversarial Repro-
gramming of Neural Netowrks Elsayed et al. (2018), where
a target model is kept frozen while ad-hoc inputs are used to
change the functional behaviour of the original model.
Additionally, computer-to-in-vivo experiments were con-
ducted in which organisms were developed from scratch to
perform specific tasks Kriegman et al. (2020). Other exam-
ples of significantly modifying anatomical outcomes with-
out altering the genome include lines of flatworms that re-
generate with two heads following alteration of bioelectric
signaling Durant F (2016).

Conclusion
We demonstrated that it is possible to change global prop-
erties of a Neural Cellular Automata, by injecting very few
adversaries that gradually take over the entire organism. For
some tasks, where the time is a major factor, a larger injec-
tion of adversaries will be needed; for example, if we want
to make a mortal organism immortal, the adversaries must
be able to take over before the organism dies. Finally, we
showed that the parameters of the adversaries can be chosen
to be close to the original cells that they replace.
The many similarities between Neural Cellular Automata
and real biological organisms, may indicate that a more re-
fined technique could be used to bioengineer already living
organisms.
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